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Introduction

The Computational Materials Science Group (CMSG) focuses on problems dealing 

with  modeling  aspects  that  support  experimental  Solid  State  Physics,  Materials  Science, 

Genomics,  Engineering, among other multidisciplinary scientific areas. Interested staff and 

students from University of Eldoret, other universities and tertiary institutions in Kenya and 

the region are invited to undertake collaborative work with us.  We have several international 

collaborative  links  ensuring that  our  research  themes  produce high quality  peer-reviewed 

international  publications  and have  current  relevance  to  community.  This  report  presents 

highlights  of  some  of  the  group  activities  in  2013.  The  group  currently  consists  of  the 

following members:

Staff Members
1. Nicholas W Makau, BSc (Moi) MSc (Moi) PhD (Witwatersrand, RSA, DAAD sponsored) 
2. George O Amolo, BSc (Moi) Msc (Nairobi, DAAD sponsored) PhD (Witwatersrand, RSA, 
DAAD sponsored)
3. Joseph  Z Mapelu, BSc (Moi) Msc (Nairobi, DAAD sponsored) PhD (Moi, DAAD 
sponsored)
4. Rogers Koech, BSc (Moi) (MSc candidate-JKUAT)–Computer Science- (System  
    Administrator)

Current Postgraduate Students
1. Winfred Mulwa, BSc (Kampala) Msc (Eldoret) PhD candidate
2. Henry Otunga, BSc (Maseno) MSc (Maseno) (Dphil candidate - Maseno/Eldoret)
3. Phillip W O Nyawere, BSc (Kenyatta) MSc (Moi) PhD (Eldoret)
4. Dennis Magero, BSc (Moi) Msc (Eldoret) PhD candidate
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5. Mike Atambo, BSc (Moi) MSc (Eldoret) (System Administrator)
6. Victor Meng'wa, BEd Sc (Egerton) (MSc candidate – Eldoret)
7. Patrick Mwonga, BEd Sc (Kenyatta) (MSc candidate – Eldoret)
8. Peter Kirui, BEd Sc (Egerton) (MSc candidate – Eldoret)
9. Felix Dusabirane, Bsc (Kigali) (MSc candidate – Eldoret)
10. Carolyne Bakasa, Bsc (Moi) (MSc candidate – Eldoret)

Latest Peer-Reviewed Publications 

(see attached publications at the end of report)

Conferences Presentations/Schools Attended

Dennis Magero,  Victor  Meng'wa, Winfred Mulwa and Patrick Mwonga made conference 
presentations  in  the  Materials  Science  and  Solar  Energy  in  East  and  Southern  Africa 
(MSSEESA) held in Nairobi in November 2013. The works they presented are, respectively, 
(1) The Hydrogen Economy – Materials for Hydrogen Storage Surface-Dennis Magero; (2)  
Calculations for (110) Surface Rutile TiO2 and SnO2 for Dye Sensitized Solar Cells-Victor  
Mengw'a and  (3) First Principle Calculations of  Nb:TiO2 for Solar Cells Applications –  
Winfred Mulwa. (4) Studies of Intrinsic defects in TiO2: A DFT Study – Patrick Mwonga.

George Amolo presented an invited talk, “ab initio studies of hard materials and materials for 
solar energy utilization”,   in the 7th African Materials Research Society (AMRS), held in 
Addis Ababa, 8 – 13th December 2013. 

Victor  Meng'wa  and  Winfred  Mulwa  made  conference  presentations  in  the  7th  African 
Materials  Research  Society  (AMRS),  held  in  Addis  Ababa,  8  –  13th  December  2013: 
Calculations for (110) Surface Rutile TiO2 and SnO2 for Dye Sensitized Solar Cells by Victor  
Mengw'a and  First  Principle  Calculations  of   Nb:TiO2 for  Solar  Cells  Applications  by  
Winfred Mulwa.

Mike Atambo attended a QMC School in JAIST, Japan, from 19th – 23rd February 2013.

Graduations:

1.  Mulwa,  Winifred: graduated  with  an  MSc  on  3rd  December  2013.  She  has  already 
registered for a PhD at University of Eldoret.

2. Magero, Dennis:  graduated with an MSc on 3rd December 2013 being the 1st student 
from a Chemistry/Physics collaboration in the group. He has made an application for a PhD 
sandwich Programme with Josef Fourier University in Grenoble, France, in a joint project 
with the Computational Materials Science Group, University of Eldoret, Kenya. From the 
French end is Professor Mark Casida, a world reknown Quantum Chemist. Professor Casida 
has visited our group twice. His initial  visit was in the 2nd African School on Electronic 
Structure Methods and Applications (ASESMA 2012) held in Eldoret and partly sponsored 
by NCST funds. His second visit was partly sponsored by the French Embassy, Nairobi, and 
University of Eldoret in May 2013. 
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3. Atambo, Mike: graduated with an MSc on 3rd December 2013. He is likely to register for 
a PhD under a joint project with Professor Ryo Maezono of the Japan Advanced Institute of 
Science  and Technology (JAIST).  Professor  Maezono and his  colleagues  has  visited  our 
group 3 times and his research associate, Dr Kenta Hongo, is expected to visit us on 22nd of 
February 2014. This collaboration with the Japanese group has resulted in the drafting of 
joint proposals, two of which have been submitted to the NCST/JSPS calls but so far with no 
success. This group has also been kind enough to donate computing infrastructure which now 
forms  equipment  for  our  research group  in  Eldoret  and  hence  the  university.  A  draft 
publication following the work of Mike Atambo and a Japanese student, Kentaro Hayashi, 
from JAIST, has been in preparation for several months now and is expected to be ready soon 
for submission to a journal.

4. Meng'wa, Victor:  submitted his MSc thesis and is awaiting oral defence. The work of 
Victor has gotten interest from Prof Ralph Gebauer, a scientist in the International Centre for 
Theoretical  Physics  (ICTP),  Trieste,  Italy.  There  have  been negotiations  to  get  Victor  to 
register  for  a  PhD under  the  Sandwich Training  Education  Program (STEP),  which  will  
provide him with funding to visit ICTP to consult a supervisor in Italy for a period of up to 4 
months per year for 3 years. 

5. Nyawere, Philip: Graduated with a PhD on 3rd December 2013. He is a member of staff 
in Kabarak University.  His work on defects in materials is related to the current work on 
devices to be fabricated. His thesis has produced 2 peer-reviewed international publications.

6. Rop Ronald: Graduated with a PhD on 3rd December 2013. He is a member of staff in 
Egerton University. His thesis has produced 2 peer-reviewed international publications.

7. Ronno, Cosmas: Graduated with a PhD on 3rd December 2013. He is a member of staff in 
University of Eldoret. His work on Solar Energy Radiation is related to the current work on 
devices to be fabricated. He is currently working on a number of publications.

Research/Training Visits

2013

1. Nicholas Makau and George Amolo made a 3 month visit in June - August 2013 to the 

International Centre for Theoretical Physics (ICTP) in Trieste, Italy, under the Associateship 

program. Host: Prof Sandro Scandolo.
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2013- Recent Visitors 

1. The team of Prof Ryo Maezono, Dr Kenta Hongo and Mr Kentaro Hayashi of the 
Japanese Institute of Science and Advanced Technology (JAIST, Japan) visited our group in 
March  2013.  Dr  Kenta  Hongo  is  currently  guiding  a  graduate  student  (MSc),  Carolyne 
Bakasa, to use the Gaussian code. 

2. Professor Mark Casida visited our group in May 2013 under the sponsorship of the 
French Embassy, Nairobi, and University of Eldoret.

3. George Manyali from University of the Witwatersrand visited our group in August 
and December 2013. He has participated in the training of scientific  mentorship program 
students.

Local and International Collaborators

1. Local

(a) Robert Gateru – Kenya Methodist University: Area of Experimental Device Physics

(b) Christoper Maghanga – Kabarak University: Area of Solar Energy  Energy Materials

(c) Robinson Musembi and Julius Mwabora – University of Nairobi: Area of Solar Energy 

Materials

2. International

(a) Ryo Maezono and Kenta Hongo – Japan Advanced Institute of Science and Technology 

(JAIST), Ishikawa, Japan: Area of Computational Materials Science

(b) Daniel Joubert -  University of the Witwatersrand (Wits), Johannesburg, South Africa: 

Area of Computational Materials Science

(c) Sandro Scandolo - International Centre for Theoretical Physics (ICTP), Trieste, Italy: 

Area of Computational Materials Science

(d) Mark Casida – University of Grenoble, Paris, France: Area of Computational Quantum 

Chemistry.

(e) Mohammed Hisham – Sultan Qaboos University, Sultanate of Oman: Area of Atomistic 
Simulations.
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Launch of the Scientific Mentorship Program

The first 5 students recruited to participate in the mentorship program were: 

1. Elkana Rugut: (Bsc/Physics)

Project Title: Electronic Structure of group 3d Transition Metal Oxides.

2. Sharon Mugangayi: (Bsc/Chemistry and Biochemistry)

Project Title: Modeling of DAVP Class Compounds Targeting HIV Reverse Transcriptase.

3. Alex Mnjama: (Bsc/Chemistry and Biochemistry)

Project  Title:  In  Silico  analysis  of  the  promoters  of  genes  involved  in  Aluminum 

Tolerance/Resistance  in  Wheat,  Barley,  Arabidopsis  &  Tausch  to  Identify  Regulatory 

Elements for the Trace.

4. Samson Ngala: (Bsc/Physics)

Project  Title:  The Prediction  of  structural,  electronic  and optical  properties  of  Palladium 

Hydride (PdH)

5. Eric Buko: (Bsc/Physics)

Project Title: Electronic Structure Studies of the Properties of Ti3O5.

            

Facilities and Software

1. Sun-Server  52  core  cluster  funded  by  the  Government  of  Kenya  (National 

Commission for Science, Technology and Innovation- NACOSTI) and The Academy 

of Sciences for Developing Nations (TWAS).

2. Linux  PC’s  with  secure  shell  capabilities  to  connect  remotely  to  sites  of  our 

collaborators clusters namely:

a) Prof. Daniel Joubert, School of Physics, University of the Witwatersrand, South 

Africa.

b) Dr Ryo Maezono, Japanese Advanced Institute of Science and Technology (QMC 

and Quantum Espresso)

3. Computer laboratory with Linux PC’s installed with DFT codes – Quantum Espresso, 

Castep, Open source QMC – Casino, licensed VASP code.

4. Three core i7 PC cluster.
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Summary of the Impacts from activities of the Computational Materials 

Science Group (CMSG)

Some of the noticeable impacts to the University of Eldoret and the country at large 

have been an increased number of the students taking graduate physics in the country as well 

as  more  collaborators  between  Kenyan  researchers  and  industry  than  before.  Indeed 

government institutions have inquired into the possibility of partnering with universities to 

train their staff in key  areas relevant to them. 

The  international  community  has  also  shown  great  interest  in  collaborating  with 

Kenyan scientists in key research projects of mutual interest.

The Kenya government through its relevant arms has recognized the potential of the 

CMSG in collaborating towards the development of policies of specialized research centres 

like the proposed nanotechnology centre as well as the establishment of the national physical 

sciences  research  institute  (NPSRI)  that  are  expected  to  impact  on  the  lives  of  ordinary 

Kenyans through research of national strategic relevance.
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a b s t r a c t

We have performed ab-initio calculations of the formation and migration energies of intrinsic defects
(interstitials, vacancies and Frenkel defects) in barium fluoride. The calculations were performed within
density-functional theory and the generalized-gradient approximation, employing pseudopotentials and
a plane-wave basis set. The results agree reasonably well with available experimental data. They are also
compatible with calculations and experimental data on calcium fluoride. We found that Frenkel pairs are
composed of pairs of charged defects and that their formation energies are 3.44 eV and 1.88 eV for cation
and anion, respectively. The lowest barrier for defect migration was found to correspond to the migration
of the anion vacancy along the 〈100〉 direction (energy barrier of 0.53 eV), which compares well with the
experimental value of 0.59 eV. Cation vacancy migration was instead found to require an energy of at
least 2.22 eV along the easiest migration path, 〈100〉.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Alkaline-earth fluorides XF2 (X¼Mg,Ca, Sr, Ba) with the cubic
fluorite structure constitute an important class of relatively simple
ionic crystals with a wide range of applications. CaF2 [1,15] and
BaF2 have been extensively studied because of their applications in
precision vacuum ultraviolet lithography, scintillation detection, as
superionic conductors and also in crystalline lens material for
precision in VUV optics [2,3]. BaF2 is one of the fastest scintillators
and is also an ideal high-density luminescent material for applica-
tions in gamma ray and elementary particle detectors [4]. Just as
CaF2, BaF2 can be used as an alternative for radiation detection [5].
When particles such as electrons, neutrons or ions with high
energy are directed to a target, atoms of the target can be
displaced from their original site generating intrinsic defects such
as vacancies and interstitials, generally in pairs known as Frenkel
defects. A fundamental quantity in the microscopic understanding
of the properties and of the suitability of a material for use in
radiation detection or as a scintillation detector, is the amount of
energy needed to form these defects and the energetic barriers
involved in their diffusion. Such properties can also help in the
understanding of other properties of the material, such as elec-
trical resistance and mechanical strength [6].

Formation energies for anion defects in BaF2 can be extracted
from ionic conductivity data [2,7]. The experimental data however
are limited to anion defects. Moreover, they do not provide
information on the microscopic processes at the basis of defect
diffusion. Atomistic simulations have been of great help in the
interpretation of experimental data in other alkaline-earth fluor-
ides. Earlier studies based on empirical potentials have focused on
MgF2, CaF2, SrF2, and BaF2 [8–10,13,14]. Shi et al. [11,12] have
reported on the H and F centers of BaF2 and CaF2. The goal of this
paper is to determine the formation energies of isolated bulk
vacancies, interstitials, and Frenkel defects, as well as the energy
barriers for migration of bulk isolated cations and anions in BaF2,
with density-functional theory methods.

We arrange this paper in the following order: we explain the
details of the calculation in Section 2, Section 3 discusses the
results, and conclusions are in Section 4.

2. Methods

All calculations have been performed in the framework of
density functional theory by employing, for the exchange-
correlation functional, the generalized gradient approximation of
Perdew–Burke–Ernzerhof [16]. Pseudopotentials were taken from
the Quantum-Espresso database [17]. For Ba, the pseudopotentials
include the semicore states 5s and 5p in the valence. The valence
wave functions were expanded in a plane wave basis set truncated
at a kinetic energy of 50 Ry (680 eV). At ambient conditions, BaF2
crystallizes in the cubic fluorite structure ðFm3m; Z ¼ 4Þ with three
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atoms in the primitive face-centered cubic unit cell and twelve
atoms in the conventional simple-cubic cell, with cations at (0, 0, 0),
(0, 1/2, 1/2), (1/2, 0, 1/2), and (1/2, 1/2, 0), and anions at
(71

4 ; 71
4 ; 71

4 ), in units of the lattice parameter. With our
approximations we obtain an equilibrium lattice parameter of
6.10 Å, which compares well with the experimental value of
6.20 Å [18] and with earlier ab-initio calculations (6.05 Å [19] and
6.32 Å [20]). Supercell calculations were performed to study the
defect properties and a 96 atom cell was used in all the calculations
in this paper. However, a larger unit cell (supercell) may be tested in
future which requires increase in computing power. In our case the
supercell corresponds to 2�2�2 conventional unit cells and to
calculate the formation energy for interstitials, we first calculated
the total energy of the perfect crystal (Ec). We then introduced an
interstitial in charge state q (q¼ 0; þ2 for Ba and q¼ 0; �1 for F)
and calculated the total energy after relaxation, Ei. Thus the
interstitial formation energy is given as

Efi ¼ Ei�Ec�Ea�qðEvbþEF Þ; ð1Þ
where Ea is the energy of a single atom in the vacuum in the
case of Ba, and half the energy of a F2 molecule in vacuum in
the case of F, Evb the position of the valence band maximum of
the crystal in the calculation with the defect, and EF is the
Fermi energy (chemical potential) of the electrons in the
material, measured from the top of the valence band [21].
The correction [21] to the position of the valence band max-
imum due to difference between the electrostatic potential
averaged over the full cell and the electrostatic potential far
from the defect was found to be negligible. Because the
calculation of Ei corresponds to a charged system, particular
care had to be paid to ensure that it was converged with
respect to that of the supercell size. To this aim, energies were
corrected for spurious interaction between periodic images, at
the monopole level [22]. Vacancy formation energies for both
cation and anion were calculated by removing one atom of Ba
or F, respectively, or their ions, followed by relaxation. The
vacancy formation energy E f

v was defined as

Efv ¼ Ev�EcþEaþqðEvbþEF Þ; ð2Þ
where Ev is the relaxed energy of the crystal containing the
vacancy. Notice that the value of the formation energies of
interstitials and vacancies depend on the position of the Fermi
level and on the choice of the atomic reference, in our case
atomic Ba and F atom. The total energy of free F atom was
simulated in a large cubic box of dimension 10 Bohr and a value
of �48.4171 Ry was obtained to simulate defect energies.
Calculated band gap for BaF2 is 7.2 eV, which is underestimated
when compared to the experimental value of � 10 eV. This is a
well-known drawback from DFT calculations; where GGA
approximations always tend to underestimate the energy band
gap [23]. Migration energies were determined as the difference
between the total energy of the system with the defect at its
stable position before the migration and that with the atom at
the saddle point along the migration path. Vacancy migration
in the fluorite structure is expected to follow a simple path
[24]. Hence the saddle point was obtained by constraining the
migration coordinate along a linear path and optimizing the
structure at different points along the path.

3. Results and discussion

3.1. Bulk isolated interstitial and vacancy formation energies

For interstitial formation energies, the octahedral site, two
bridge sites, and the fourfold hollow site were considered [1].

In agreement with Ref. [1], we found that the octahedral site is
preferred, and as such, all calculations reported below refer to the
interstitial in the octahedral site. The values of the formation
energies are shown in Table 1. The more negative the energy, the
easier it is to form such a defect. It is therefore easier to form
neutral flourine interstitial than barium interstitial.

Fig. 1 shows the values of the interstitial formation energy for F
and F� as a function of the Fermi energy. In the case of neutral F
the formation energy is independent of EF and is found to be
�1.29 eV. For all values of EF however we find that F� is more
stable than its neutral counterpart. We therefore conclude that the
anion interstitial in BaF2 is negatively charged. The vacancy
formation energies calculated upon removing F or F� are shown
in Fig. 2. The formation energy of the neutral vacancy is 9.41 eV. In
a large range of values of the EF (up to about 6 eV), we find that the
positively charged F� vacancy is more stable than its neutral
counterpart. Considering that the calculated band gap is 7.2 eV, we
conclude that the fluorine vacancy is positively charged except
when the bulk is donor-rich.

The results for Ba interstitial and vacancy formation energies
are reported in Figs. 3 and 4, respectively. The formation energy of
the Ba neutral interstitial is 3.14 eV, but for all values of the Fermi
energy within the BaF2 band gap, the formation energy of the
Ba2þ interstitial is lower, and therefore the interstitial exists only
as a charged species. The same conclusion applies to the Ba
vacancy (Fig. 4).

Frenkel defects are defect pairs consisting of an interstitial and
of a vacancy produced by the displacement of an atom from a
crystal lattice site to a different location in the crystal. In the limit
of infinite separation between vacancy and interstitial the forma-
tion energy of a Frenkel defect, can be obtained by summing the
formation energies of the interstitial and vacancy formation
energies. From Figs. 1 and 2, we can argue that fluorine Frenkel
defects are always composed of charged pairs, except when the
Fermi level is close to the conduction band minimum, in which
case the interstitial is charged and the vacancy is neutral. The

Table 1
Interstitial and vacancy formation energies of BaF2 in eV.

Ion Interstitial Vacancy

Ba 3.14 15.64
F �0.62 8.73
Ba2þ �18.28 21.27
F� 2.49 �1.06
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Fig. 1. (Color online) Formation energy as a function of Fermi energy for F and F�

interstitial defects in BaF2.
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formation energy of the F Frenkel defect is 2.33 eV when both
defects are charged, and ranges between 2.33 eV and approxi-
mately 0.8 eV when the Fermi level is close to the conduction band
minimum. From Figs. 3 and 4, we conclude that Barium Frenkel
defects are always composed of charged pairs, independent of the
Fermi energy, and that their formation energy is 3.90 eV. The

values are in good agreement with experimental values extracted
from ionic conductivity measurements (1.81 eV for the anion
Frenkel defect [2,7]). They are also in line with similar calculations
on CaF2 [15]. The formation energies of the neutral Frenkel defects
are also compatible with the calculations of Refs. [1,15].

We also calculated the formation energies of Frenkel defects
with the interstitial and the vacancy separated by one or two
nearest-neighbor distances. These were carried our with the 96
atoms supercell described in the previous section. We found that
when the interstitial is placed in an octahedral site adjacent to the
vacancy site, the atomic configuration is unstable and relaxes back
to the ideal crystal lattice. On the contrary, when the interstitial is
placed in the second-nearest octahedral site from the vacancy site,
the atomic configuration is locally stable for the cation and it is
still unstable for the anion. The anion becomes locally stable only
when it is placed in the third nearest-neighbor interstitial site
from the vacancy. The formation energies of the locally stable
configurations are 1.4 eV for the anion and 4.1 eV for the cation. If
we compare these values with the values obtained for the Frenkel
defects at infinite separation, we notice that the cation Frenkel
defects find it preferable, once formed, to separate at distances
larger than the second-nearest neighbor positions, while anion
Frenkel defects find it preferable to reside at finite separation.

3.1.1. Bulk isolated vacancy migration energy
Vacancy migration energies were calculated for the anion

diffusion along three crystallographic directions, 〈100〉, 〈110〉, and
〈111〉, respectively (see Table 2). Similar to CaF2, the lowest barrier
for diffusion was found to be along 〈100〉 (0.53 eV). This value is in
good agreement with experimental data (0.59 eV Ref. [2]).

Regarding the diffusion of cation vacancies, we found that the
large size of Ba2þ (ionic radius of 1.49 Å), prevents the cation from
diffusing easily along 〈110〉 and 〈111〉. For example, a linear path
along the 〈110〉 direction brings Ba at a distance of approximately
1.5 Å from nearest fluorine. Therefore we calculated the migration
energy only along the crystallographic direction 〈100〉, and found it
to be 2.22 eV. This is slightly different with respect to recent
calculations for CaF2 where the 〈100〉 and 〈110〉 directions were
found to display very similar energy barriers. This is presumably
due to the substantial difference between the ionic radius of Ba2þ

and Ca2þ (1.14 Å ).

4. Conclusion

The energies of formation and migration of intrinsic bulk
isolated defects in BaF2 were calculated for both cation and anion
using ab-initio methods and the results show good agreement
with the available data. Energies are found to be similar to those
reported for calcium fluoride. Cation Frenkel defects are most
stable at infinite separation while anion Frenkel defects are most
stable in the third nearest neighbor. Charged Frenkel defects are
more stable than neutral Frenkel defects for both cation and anion
and they are locally stable only when the distance between
vacancy and interstitial is at least 5 Å and 8 Å for cation and anion
respectively.
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Fig. 2. (Color online) Vacancy formation energies as a function of Fermi energy for
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Fig. 4. (Color online) Ba vacancy formation energy as a function of Fermi energy EF .

Table 2
Vacancy migration energy for cation and anion for BaF2 in eV.

Direction Present Experimental

VF 〈100〉 0.53 0.59 Ref. [2]
VF 〈110〉 1.17 …
VF 〈111〉 1.15 …
VBa〈100〉 2.22 …
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a b s t r a c t

All the elastic constants of cubic, orthorhombic and hexagonal phases of BaF2 have been calculated using
first principles methods. We have employed density-functional theory within generalized gradient
approximation (GGA) using a plane-wave pseudopotentials method and a plane-wave basis set. The
calculated elastic constant values for a cubic phase compare well with recent theoretical and
experimental calculations. The bulk modulus derived from the elastic constant calculations of orthor-
hombic phase of BaF2 is 94.5 GPa and those of hexagonal phase is 161 GPa. These values are in good
agreement with experimental data available. Stability of these phases of BaF2 is also estimated in
different crystallographic directions.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Elastic constants of solids give important information about
their mechanical and dynamical properties. The single crystal
elastic constant of solids helps in interpreting seismic wave
velocities and their lateral variations. Also, the study of elastic
properties of materials helps in the understanding of the chemical
bonds and also the cohesion of materials. Elastic properties are
also related to the thermal properties according to the Debye
theory. This study is a first-principles calculation which has shown
success in obtaining elastic properties of other materials [1,2].

BaF2 is one of the fastest scintillators and is also an ideal high-
density luminescent material for applications in gamma ray and
elementary particle detectors [3]. In its scintillation property, BaF2
has a fast core–valence-band transition (cross-luminescence)
which represents radiative transition of electrons from valence
band which is originally from the 2p states of F� into the upper
core band of the crystal formed by the 5p states of Ba2þ . Where
necessary, rare earth ions are used as impurities to reduce this
self-trapped exciton luminescence [4].

Although various experimental techniques are available for
measuring elastic constants, such as ultrasonic wave propagation,
neutron scattering and Brillouin scattering, difficulties in

preparing suitable specimens for many materials as well as the
need to obtain accurate results fast and cheaply make theoretical
calculation unavoidable. The alkaline earth fluorides are known to
undergo a series of pressure-induced phase transitions to highly
coordinated AX2 structures.

Under ambient conditions, BaF2 crystallizes in the cubic fluorite
structure ðFm3m; Z ¼ 4Þ with three atoms in the primitive face-
centered cubic unit cell and twelve atoms in the conventional
simple-cubic cell, with cations at (0, 0, 0), (0, 1/2, 1/2), (1/2, 0, 1/2)
and (1/2, 1/2, 0), and anions at (71

4 ; 7
1
4 ; 7

1
4 ), in units of the

lattice parameter.
BaF2 undergoes phase transition to the orthorhombic cotunnite-

type structure (Pnam, Z¼4) at about 5 GPa then to a hexagonal
phase at pressures between 10 and 15 GPa [5,6]. The orthorhombic
phase has twelve atoms in the unit cell; four barium atoms and
eight fluorine atoms. The hexagonal phase of BaF2 (P63mmcðB8bÞ)
has six atoms; four fluorine and two barium atoms in the unit
cell.

While the elastic constants of cubic phase of BaF2 have been
studied extensively [7], those of low symmetry phases such as
tetragonal and hexagonal systems have received little attention.
Furthermore, calculation of elastic constants of these low symme-
try phases requires more computations and accurate methods for
determining total energies. Reduced symmetry also increases the
number of independent elastic constants, creating a large number
of distortion matrices necessary for calculating these constants. In
particular, the cubic phase has only three independent elastic
constants while orthorhombic crystals have nine constants. Lastly,
the hexagonal symmetry has five elastic constants. The strain
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needed for calculating the elastic constants of orthorhombic
symmetry has been found to lead to the lowest symmetry among
the three phases [8].

In Ref. [7], properties of cubic phase of BaF2 are extensively
studied including the elastic constants, phonons and volume–pres-
sure relations. Ref. [8] reported on the structural, electronic and
optical properties of BaF2 in the cubic, orthorhombic and hexagonal
phases. Recently, the variation of the independent elastic constants
as a function of pressure has been reported [9]. Elastic constants for
the cubic, orthorhombic and hexagonal phases of CaF2 have also been
reported [2]. To the best of our knowledge, the elastic constants of
hexagonal and orthorhombic phases of BaF2 have not been investi-
gated. In this paper we study all the elastic constants of the three
phases of BaF2 and mechanical properties using plane wave pseu-
dopotentials (PW-PP) calculations. Our results are compared with
theoretical and available experimental data. The rest of this paper is
organized in this order: methodology is in Section 2, elastic constants
and bulk moduli in Section 3 and Section 4 discusses results while
conclusions are in Section 5.

2. Methodology

All calculations have been performed in the framework of
density functional theory by employing, for the exchange–correla-
tion functional, the generalized gradient approximation of Perdew–

Burke–Ernzerhof [10]. Pseudopotentials were taken from the
Quantum-Espresso database [11]. For Ba, the pseudopotentials
include the semi-core states 5s and 5p in the valence. The total
energy convergence in the iterative solution of the Kohn–Sham
equations [12] was set at 2�10�8 Ry.

In structural optimization, we used the procedure in Jiang [13]
and Schmalz's work [7] and all the calculations were done under
ground state conditions. Elastic constants were calculated as the
second derivatives of the internal energy with respect to strain
tensor ðɛÞ [14]. During structural optimization, the enthalpy was
minimized by varying the length of the lattice vectors, while the
angles between the lattice vectors and the atomic positions in the
unit cell were fixed. The applied strains were isochoric (volume-
conserving) which had several important consequences. First was
the conservation of the identity of the calculated elastic constants
with the strain–stress coefficients, which were appropriate for the
calculation of elastic wave velocities but was not important for
finite pressure. Second, the total energy depends on the volume
much more strongly than the strain and by choosing volume
conserving strains we avoided the separation of these two con-
tributions to the total energy. Lastly, the change in the basis set
associated with the applied strain was minimized and hence
reducing computational uncertainties [7].

Three independent elastic constants for cubic, nine for orthor-
hombic and five for hexagonal phases of BaF2 were calculated as
mentioned before. Small distortions, δ, between �0.02 and 0.02 at
the intervals of 0.002 giving a total of twenty one distortions were
considered in all the three phases. Each strain was parametrized
by a single variable δ, and the total energy was calculated for each
distortion. The calculated total energies were fitted to a polyno-
mial in δ and then equated to the appropriate elastic constant
coefficient expression given for each matrix in cubic, orthorhombic
and hexagonal phases.

3. Theory

3.1. Cubic phase

The cubic phase has only one lattice parameter a and in this
work, a grid of 6�6�6 Monkhorst–Pack [15] k-points was used.

The convergence was stopped at a plane wave cut-off energy of
Ecut¼50 Ry. Calculation of elastic constants for the cubic phase is
less straineous when compared to either the hexagonal or the
orthorhombic phases. Our optimized cell volume has lattice
dimensions which compare well with other works [7] as noted
earlier in Section 1. For a solid under strain, elastic energy is given
as follows:

ΔE
V

¼ 1
2

∑
6

i ¼ 1
∑
6

j ¼ 1
Cijeiej; ð1Þ

where V is the undistorted lattice cell volume, ΔE is the energy
change from the strain with vector e¼ ðe1; e2; e3; e4; e5; e6Þ and C is
the matrix of the elastic constants [1]. The cubic structure of BaF2
has its primitive vectors defined as follows:

a1
a2
a3

0
B@

1
CA¼

0 a
2

a
2

a
2 0 a

2
a
2

a
2 0

0
B@

1
CA; ð2Þ

with a! being the lattice constant. Under strain, the primitive
vectors ai

! ði¼ 1;2;3Þ are transformed to the new vectors by

a′1
a′2
a′3

0
B@

1
CA¼

a1
a2
a3

0
B@

1
CAðIþɛÞ; ð3Þ

where ɛ is the strain tensor which is related to the strain vector e
by the following equation:

ɛ¼
e1

e6
2

e5
2

e6
2 e2

e4
2

e5
2

e4
2 e3

0
B@

1
CA: ð4Þ

In order to calculate the elastic constant C44, we applied the tri-
axial shear strain e¼ ð0;0;0; δ; δ; δÞ to the crystal following a
similar approach as in Ref. [16]:

ΔE
V

¼ 3
2
C44δ

2
: ð5Þ

The shear modulus C′ was then calculated from the volume-
conserving orthorhombic strain e¼ ðδ; δ; ð1þδÞ�2�1;0;0;0Þ by
using the relation given by the following equation:

ΔE
V

¼ 6C′δ2þOðδ3Þ: ð6Þ

Lastly, we obtained bulk modulus B from the strain under hydro-
static pressure e¼ ðδ; δ; δ;0;0;0Þ [1] using the following expres-
sion:

ΔE
V

¼ 9
2
Bδ2: ð7Þ

Using the relations of Eqs. (5)–(7), and knowing that the shear
modulus is given as C′¼ 1

2 ðC11�C12Þ, all the three independent
elastic constants of the cubic phase of BaF2 were calculated.

3.2. Orthorhombic phase

The face centered orthorhombic phase of BaF2 has three lattice
parameters a!, b

!
and c!. A kinetic energy cut-off of 30 Ry and a

k-point grid of 2�4�2 was used in all the calculations reported
here. Bravais lattice vector of the orthorhombic phase has a matrix
of the form

R¼ 1
2
b

0 1 c=b
a=b 0 c=b

a=b 1 0

0
B@

1
CA: ð8Þ

R can be strained according to the relation R′¼ RD, where R′ is
the deformed matrix with distorted lattice vectors and D is the
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symmetric distortion matrix, which contains the strain compo-
nents. Since we have nine independent elastic constants, we need
nine different strains to determine them. The nine distortion
matrices used in the present calculations are described in the
distortion matrices D1–D9 given in Table 1 with the corresponding
change in energy to volume ratio. The nature of distortions that
these matrices create has been described by Ravindran [8] and is
given in Tables 1 and 2. Bulk modulus for the orthorhombic phase
Bortho: derived from the elastic constants is given as follows:

Bortho: ¼
Λ

ð1þγþsÞ2
ð9Þ

where

Λ¼ C11þ2C12γþC22γ2þ2C13sþC33s2þ2C33γs ð10Þ

s¼ ðC11�C12ÞðC33�C13Þ�ðC23�C13ÞðC11�C13Þ
ðC33�C13ÞðC22�C12Þ�ðC13�C23ÞðC12�C23Þ

ð11Þ

γ ¼ ðC22�C12ÞðC11�C13Þ�ðC11�C12ÞðC23�C12Þ
ðC22�C12ÞðC33�C13Þ�ðC12�C23ÞðC13�C23Þ

ð12Þ

3.3. Hexagonal phase

The same approach employed for the orthorhombic phase [17]
was used for the hexagonal phase only that the hexagonal phase of
BaF2 has two lattice parameters a and c with Bravais lattice vectors
in matrix form

R¼

ffiffi
3

p
2 a �1

2a 0

�
ffiffi
3

p
2 a

1
2a 0

0 0 c
a

0
BB@

1
CCA: ð13Þ

The k-point grid used in this case was 6�6�3 with a cut-off
energy of 35 Ry. Again R can be strained according to the relation
R′¼ RD where R′ is the deformed matrix with distorted lattice

Table 1
Distortion matrices for the elastic constants for the orthorhombic phase of BaF2 for the nine elastic constants;
C11, C22, C33, C44, C55, C66, C12, C13 and C23 with the corresponding strain energy per unit volume.

Distortion constant Distortion matrix Ratio of energy change to volume

D1 1þδ 0 0
0 1 0
0 0 1

0
B@

1
CA

ΔE
V

¼ τ1δþ
C11

2
δ2

� �

D2 1 0 0
0 1þδ 0
0 0 1

0
B@

1
CA

ΔE
V

¼ τ2δþ
C22

2
δ2

� �

D3 1 0 0
0 1 0
0 0 1þδ

0
B@

1
CA

ΔE
V

¼ τ3δþ
C33

2
δ2

� �

D4 1

ð1�δ2Þ1=3
0 0

0
1

ð1�δ2Þ1=3
δ

ð1�δ2Þ1=3

0
δ

ð1�δ2Þ1=3
1

ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ 2ðτ4δþC44δ
2Þ

D5 1
ð1�δ2Þ1=3

0
1

ð1�δ2Þ1=3

0
1

ð1�δ2Þ1=3
0

δ

ð1�δ2Þ1=3
0

1
ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ 2ðτ5δþC55δ
2Þ

D6 1

ð1�δ2Þ1=3
1

ð1�δ2Þ1=3
0

δ

ð1�δ2Þ1=3
1

ð1�δ2Þ1=3
0

0 0
1

ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ 2ðτ6δþC66δ
2Þ

D7 1þδ

ð1�δ2Þ1=3
0 0

0
1�δ

ð1�δ2Þ1=3
0

0 0
1

ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ ðτ1�τ2Þδþ
1
2
ðC11þC22�2C12δ

2Þ

D8 1þδ

ð1�δ2Þ1=3
0 0

0
1

ð1�δ2Þ1=3
0

0 0
1�δ

ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ ðτ1�τ3Þδþ
1
2
ðC11þC33�2C13Þδ2

D9 1

ð1�δ2Þ1=3
0 0

0
1þδ

ð1þδ2Þ1=3
0

0 0
1�δ

ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ ðτ2�τ3Þδþ
1
2
ðC22þC33�2C23Þδ2
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vectors and D is the symmetric distortion matrix, which contains
the strain components. Since we have five independent elastic
constants, five different strains were used to determine them. The
distortion matrices D10–D14 shown in Table 2 were applied to
deform the crystal and obtain the relevant relations necessary to
calculate the required elastic constants. Bulk modulus for the
relaxed hexagonal phase Bhexa: is given as follows:

Bhexa: ¼
2ðC11þC12Þþ4C13þC33

9
ð14Þ

3.4. Stability of the phases

Zener anisotropy A is an indicator of the degree of anisotropy in
the solid structure compared to the isotropic material [1]. For the
cubic phase, the Zener anisotropy is given as follows:

A¼ 2C44

C11�C12
: ð15Þ

When coordinates of ions are optimized, internal strain is released
and from those optimized coordinates, the Kleinman internal-
strain parameter ξ is given as [18]

ξ¼ C11þ8C12

7C11þ2C12
: ð16Þ

The macroscopic elastic constants, bulk modulus B and elastic
shear constant given as C′¼ ðC11�C12Þ=2 are related to bond-
bending force constant β and bond-stretching force constant α
[14] by the following equations:

3B¼
ffiffiffi
3

p

4d
ð3αþβÞ�0:355SCo; ð17Þ

and

C′¼
ffiffiffi
3

p

2d
β�0:053SCo; ð18Þ

where SCo is the Coulomb contribution and d is the bond length, a
parameter that needs to be calculated so as to determine these
properties. If we neglect this latter quantity, the bond-stretching

force constant α and bond-bending force constant β can be
obtained from

β¼ 2dffiffiffi
3

p C11�C12

2
ð19Þ

and

α¼ 4dffiffiffi
3

p B�1
3
β ð20Þ

From our cubic structure, d between dissimilar ions is approxi-
mated as 2.642 Å.

Table 7 lists data for cohesive energy ΔEBa� F for the cubic
phase of BaF2, the Zener anisotropy factor, A, and Kleinman
internal-strain parameter ξ for the same phase. A and ξ are
calculated from the elastic parameters of their respective cubic
phases. The difference in cohesive energy ΔEBa� F is given for a
pair of dissimilar atoms.

The Zener anisotropy factors in the orthorhombic phase are
three; firstly, A1 which is the shear anisotropic factor for the {1 0 0}
shear planes between the 〈0 1 1〉 and 〈0 1 0〉 directions. Secondly,
A2 which is the shear factor in the {0 1 0} shear planes between
〈1 0 1〉 and 〈0 0 1〉 directions. Lastly, for the {0 0 1} direction the
shear plane between 〈1 1 0〉 and 〈0 1 0〉 is given as A3 [8]. These
factors are given as follows:

A1 ¼
4C44

C11þC33�2C13
ð21Þ

A2 ¼
4C55

C22þC33�2C23
ð22Þ

and

A3 ¼
4C66

C11þC22�2C12
: ð23Þ

The hexagonal phase has anisotropy A1 and A2 which are given as
follows:

A1 ¼
1

2C44
þ C33þ2C13

2ð2C2
13�C33ÞðC11þC12Þ

� 1
2ðC11�C12Þ

ð24Þ

Table 2
Distortion matrices for the elastic constants for the hexagonal phase of BaF2.

Distortion
constant

Distortion matrix Ratio of energy change to volume

D10 1þδ 0 0
0 1þδ 0
0 0 1þδ

0
B@

1
CA

ΔE
V

¼ ðτ1þτ2þτ3Þδþ
1
2
ð2C11þ2C12þ4C13þC33Þδ2

D11 ð1þδÞ�1=3 0 0
0 ð1þδÞ�1=3 0
0 0 ð1þδÞ�2=3

0
B@

1
CA

ΔE
V

¼ ðτ1þτ2þτ3Þδþ
1
9
ðC11þC12�4C13þ2C33Þδ2

D12 1þδ

ð1�δ2Þ1=3
0 0

0
1�δ

ð1�δ2Þ1=3
0

0 0
1

ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ ðτ1�τ2ÞδþðC11�C12Þδ2

D13 1

ð1�δ2Þ1=3
0

δ

ð1�δ2Þ1=3

0
1

ð1�δ2Þ1=3
0

δ

ð1�δ2Þ1=3
0

1

ð1�δ2Þ1=3

0
BBBBBBBB@

1
CCCCCCCCA

ΔE
V

¼ τ5δþð2C55Þδ2

D14 1 0 0
0 1 0
0 0 1þδ

0
B@

1
CA

ΔE
V

¼ τ3δþ
C33

2

� �
δ2
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A2 ¼
1

2C44
þ C11þC12þC13

2ðC2
13�C33ÞðC11þC12Þ

: ð25Þ

4. Results

4.1. Structural optimization

Table 3 shows the properties obtained for the structural
optimization of the cubic, orthorhombic and hexagonal phases of
BaF2.

The computed structural properties show good agreement with
both theoretical and experimental calculations. The cubic phase has
the least deviation from experimental data showing a lattice
constant contraction of about 3.1%. The calculated cell parameters
for the orthorhombic unit cell compare well with the corresponding

experimental values with a deviation of about 7% of lattice constant
a. However other values such as b/a and c/a show good agreement
between theory and experiment. The deviation from the experi-
mental lattice constant for the hexagonal phase is 4.5% and about
14% for b/a.

4.2. Elastic constants

Table 4 shows the elastic constants of the cubic phase of BaF2
calculated using different theoretical methods and results com-
pared with experimental data. Although the cubic elastic constants
of BaF2 have been studied extensively, it was still necessary to
calculate these in the current work so as to confirm them using a
different approach as well as validating the calculated elastic
constants for other phases of BaF2 where experimental results
were unavailable. It is here shown that our calculated elastic
constants for the cubic phase compare quite well with other
works. For example, compared to ABINIT calculations, our errors
were lower. In particular, error for C11 in our case was 3.2% and
about 23% for ABINIT compared to experimental value. For C12 our
error was 17% and 56% for ABINIT. Our C44 had the largest error of
23% compared with 13% for ABINIT. These errors are attributed to
the fact that our use of GGA pseudopotentials underestimates the
elastic constants while the use of LDA in ABINIT overestimates the
elastic constants.

Figs. 1–3 show the plots used to obtain parameters needed in
the computation of the elastic constants. These are associated to
the distortion constants D shown in Tables 1 and 2. In particular
Fig. 1 is used for the cubic phase while Figs. 2 and 3 are used for
orthorhombic and hexagonal phases of BaF2, respectively. Each
figure shows the parabolic shape predicted by their respective
equations as shown in Section 3.

Table 5 shows elastic constants for the orthorhombic phase of
BaF2. In comparison with cubic and orthorhombic phases of BaF2,
the hexagonal phase has the largest C11 and C12 values (Table 6).
This suggests that the hexagonal phase of BaF2 is the most stiff
phase among the three phases as predicted by Jiang et al. [13]. The
bulk moduli of the orthorhombic and hexagonal phases are
calculated from the derived values of the elastic constants as
discussed in Ravindran et al. [8,17] and the results are given in
Table 8.

The shear anisotropic factors for the orthorhombic and hex-
agonal phases of BaF2 are shown in Table 8. An isotropic material
has the factors A1, A2 and A3 equal to one while any other value
less or greater than one indicates the degree of anisotropy. From
Table 8, the orthorhombic and hexagonal phases of BaF2 are

Table 3
Structural optimization results of the cubic, orthorhombic and hexagonal phases of
BaF2 at zero pressure.

Cubic (C1) a (Å) b/a c/a Ref.

Quantum espresso (GGA) 6.01 Present
ABINIT (LDA) 6.05 Ref. [7]
CRYSTAL (GGA) 6.32 Ref. [13]
Expt. (300 K) 6.20 Ref. [5]

Orthorhombic (C23)
Quantum espresso (GGA) 6.692 1.158 0.598 Present
CRYSTAL (GGA) 6.871 1.174 0.608 Ref. [13]
Expt. (300 K) 6.159 1.275 0.646 Ref. [5]

Hexagonal (B8b)
Quantum espresso (GGA) 4.269 1.4894 – Present
CRYSTAL (GGA) 4.501 1.373 – Ref. [13]
Expt. (300 K) 5.516 1.297 – Ref. [5]

Table 4
Elastic constants of the cubic phase of BaF2 (GPa). The results are compared with
other theoretical results and experimental data.

Method C11 C12 C44 Ref.

Quantum espresso 88.2 34.3 19.6 Present
ABINIT 112.40 64.89 28.76 [7]
Expt. (300 K) 91.22 41.48 25.51 Ref. [7] and references therein
Expt. (0 K) 98.10 44.81 25.44 Ref. [7] and references therein
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Fig. 1. Variation of ΔE=V0 with δ for calculating elastic constants of the cubic phase of BaF2. (a) Fit for C44, (b) corresponds to shear modulus C′ and (c) fit for bulk modulus B.
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anisotropic though the degree of anisotropy varies with the phase
and the direction of study. Given that A2 is greater than A1 in the
hexagonal phase means that contraction is easiest in any direction

normal to the hexagonal axis [19]. In addition, the hexagonal
phase is anisotropic in all directions for BaF2 according to values
shown in Table 8.
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Fig. 2. Changes in the pressure (ΔE=V0 as a function of strain δ) for the orthorhombic phase of BaF2. The dots represent the calculated values and the solid lines are the
polynomial fit. The D1–D9 correspond to the distortion matrices given in Section 3.2.
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plots. The dots represent the calculated values and the solid lines are the polynomial fits.

Table 5
Elastic constants for the orthorhombic phase of BaF2 in GPa.

Elastic constant C11 C22 C33 C44 C55 C66 C12 C13 C23

Quantum espresso 275.5 346 126 91.7 47.2 147.5 32 39 60
Expt. – – – – – – – – –

Table 6
Elastic constants for hexagonal phase of BaF2 in GPa.

Elastic constant C11 C12 C33 C55 C13

Quantum espresso 460 399 41 21.7 138.5
Expt. – – – – –
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5. Conclusion

In this work, the elastic constants of the three phases
of BaF2 have been calculated using first-principles plane wave
pseudopotentials. The elastic constants for cubic phase are in good
agreement with both experimental and other theoretical works.
All the elastic constants of orthorhombic and hexagonal phases of
BaF2 have been calculated for the first time. These values are used
to calculate the bulk modulus of these phases and a good
agreement is established with other calculations. Stability of these
phases shows that the hexagonal phase has the least anisotropy
in all directions indicating least stability. In fact, the anisotropy of
this hexagonal phase is so low that it is not near those of cubic
and orthorhombic phases. This agrees well with the experi-
mental findings that at about 17 GPa, BaF2 is existing only in the
hexagonal phase.
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Table 7
Stability properties of cubic phase of BaF2.

Phase A ξ ΔEBa�F (eV) Bulk modulus B (GPa)

Cubic (present) 0.727 0.56 24.87 535
Cubic (ABINIT) 1.21 0.732 – –

Table 8
Stability properties of orthorhombic and hexagonal phases of BaF2.

Phase A1 A2 A3 Bulk modulus B (GPa)

Orthorhombic 1.13 0.54 0.86 94.5
Hexagonal 0.015 0.023 161
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